Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
1.
The International Journal of Sociology and Social Policy ; 43(7/8):710-726, 2023.
Article in English | ProQuest Central | ID: covidwho-20237136

ABSTRACT

PurposeIn today's challenging world, achieving professional commitment among healthcare workers is becoming the need of time. Drawing on self-determination theory, the current study examines how and under which boundary conditions perceived organizational support affects professional commitment.Design/methodology/approachData was collected from doctors and nurses employed in public and private sector hospitals by employing a split-questionnaire design.FindingsThe authors' study findings demonstrate that perceived organizational support has a positive and indirect effect on the professional commitment of nurses and doctors via mediating the role of subjective well-being. The authors also found that these findings depend on healthcare workers' burnout levels. The positive relationship between perceived organizational support and subjective well-being is attenuated by burnout syndrome.Practical implicationsThe current study poses implications for policymakers and administrators of healthcare institutions as well as to develop a supportive culture to evoke more professional commitment among healthcare workers. Implications for nursing managers and policymakers are discussed in light of the study findings.Originality/valueHealthcare institutions are increasingly paying attention to raising the professional commitment of their workforce, especially in the wake of a crisis like the COVID-19 outbreak. The current study will add to the body of literature on nursing management, healthcare studies and organizational psychology in the South Asian context by explaining the relationship between POS and professional commitment, drawing on self-determination theory.

2.
Negotiation Journal ; 39(2):133-135, 2023.
Article in English | ProQuest Central | ID: covidwho-20236061
3.
Med. lab ; 26(3): 237-259, 2022. Tabs, ilus, Grafs
Article in Spanish | WHO COVID, LILACS (Americas) | ID: covidwho-20239968

ABSTRACT

La enfermedad COVID­19 es causada por el virus SARS-CoV-2, descrito por primera vez en diciembre del 2019 en Wuhan, China, y declarada en marzo del 2020 como una pandemia mundial. Actualmente existen diversos métodos diagnósticos para COVID-19, siendo el estándar de oro la detección del material genético mediante la reacción en cadena de la polimerasa (PCR), en su variante, la RT-PCR, que detecta el material genético de tipo ARN presente en el virus. Sin embargo, es necesario disponer de pruebas rápidas con alta sensibilidad y precisión para realizarlas a gran escala y brindar un diagnóstico oportuno. Adicionalmente, se debe disponer de otras herramientas que, si bien no van a establecer un diagnóstico, le van a permitir al profesional brindar un mejor manejo clínico y epidemiológico que ayuden a predecir el agravamiento del paciente y su posible ingreso a UCI, destacando entre estas los niveles de dímero D, linfocitos, ferritina, urea y creatinina, entre otras. En esta revisión se evalúa la utilidad y limitaciones de los diferentes métodos diagnósticos para COVID-19, al igual que las características, fisiopatología y respuesta inmune al SARS-CoV-2, así como algunos aspectos preanalíticos de importancia que ayudan a minimizar errores en el diagnóstico como consecuencia de procedimientos incorrectos en la toma, transporte y conservación de la muestra, y que permiten al profesional emitir resultados veraces y confiables. Lo anterior se realizó basado en artículos originales, revisiones y guías clínicas


COVID­19 is caused by the SARS-CoV-2 virus, first described in December 2019 in Wuhan, China, and declared a global pandemic in March 2020. Currently there are various diagnostic methods for COVID-19, the gold standard is the detection of genetic material through polymerase chain reaction (PCR) in its variant, RT-PCR, which detects RNA-type genetic material present in the virus. However, it is necessary to have rapid tests with high sensitivity and precision to be performed on a large scale and provide timely diagnosis. Furthermore, other tools must be available, and although they will not establish the diagnosis, will allow the professional to provide better clinical and epidemiological management that will help predict the worsening of the patient and possible admission to the ICU. Among these, levels of D-dimer, lymphocytes, ferritin, urea and creatinine. In this review, the usefulness and limitations of the different diagnostic methods for COVID-19 are evaluated, as well as the characteristics, pathophysiology and immune response to SARS-CoV-2, and some important preanalytical aspects that allow minimizing diagnostic errors as a consequence of incorrect procedures in the collection, transport and conservation of the sample, that allow the professional to yield accurate and reliable results. This article was completed based on original articles, reviews and clinical guidelines


Subject(s)
SARS-CoV-2 , Polymerase Chain Reaction , Inflammation Mediators , Containment of Biohazards , Diagnosis , Ferritins , COVID-19 , L-Lactate Dehydrogenase , Methods
4.
Front Immunol ; 13: 1004023, 2022.
Article in English | MEDLINE | ID: covidwho-2323829

ABSTRACT

The present study applied distinct models of descriptive analysis to explore the integrative networks and the kinetic timeline of serum soluble mediators to select a set of systemic biomarkers applicable for the clinical management of COVID-19 patients. For this purpose, a total of 246 participants (82 COVID-19 and 164 healthy controls - HC) were enrolled in a prospective observational study. Serum soluble mediators were quantified by high-throughput microbeads array on hospital admission (D0) and at consecutive timepoints (D1-6 and D7-20). The results reinforce that the COVID-19 group exhibited a massive storm of serum soluble mediators. While increased levels of CCL3 and G-CSF were associated with the favorable prognosis of non-mechanical ventilation (nMV) or discharge, high levels of CXCL10 and IL-6 were observed in patients progressing to mechanical ventilation (MV) or death. At the time of admission, COVID-19 patients presented a complex and robust serum soluble mediator network, with a higher number of strong correlations involving IFN-γ, IL-1Ra and IL-9 observed in patients progressing to MV or death. Multivariate regression analysis demonstrates the ability of serum soluble mediators to cluster COVID-19 from HC. Ascendant fold change signatures and the kinetic timeline analysis further confirmed that the pairs "CCL3 and G-CSF" and "CXCL10 and IL-6" were associated with favorable or poor prognosis, respectively. A selected set of systemic mediators (IL-6, IFN-γ, IL-1Ra, IL-13, PDGF and IL-7) were identified as putative laboratory markers, applicable as complementary records for the clinical management of patients with severe COVID-19.


Subject(s)
COVID-19 , Interleukin 1 Receptor Antagonist Protein , Humans , COVID-19/therapy , Interleukin-6 , Kinetics , Granulocyte Colony-Stimulating Factor
5.
Journal of Knowledge Management ; 27(5):1251-1278, 2023.
Article in English | ProQuest Central | ID: covidwho-2312923

ABSTRACT

PurposeThe main purpose of this paper is to examine the direct effects of knowledge sharing and systems thinking on creativity and organizational sustainability in the hotel industry in Malaysia. In addition, the study aims to examine the mediation effect of creativity between knowledge sharing, systems thinking and organizational sustainability.Design/methodology/approachA survey method based on a questionnaire was used to gather data from 407 middle managers in the hotel industry in Malaysia. The partial least squares technique was used to examine the hypotheses.FindingsThe study found support for the effects of systems thinking and knowledge sharing on organizational sustainability. It also found support for the impact of creativity on organizational sustainability. Besides, the mediating role of creativity between systems thinking and organizational sustainability, and between knowledge sharing and organizational sustainability was also supported by data.Originality/valueThis is a pioneer work that has combined various human resources (i.e. systems thinking, knowledge sharing, creativity) to examine their impacts on organizational sustainability. Moreover, this work has established comparatively new relationships, i.e. the impact of systems thinking and knowledge sharing on creativity and organizational sustainability. In addition, the mediation role of creativity between systems thinking, knowledge sharing and organizational sustainability is relatively new in the literature. Furthermore, this study has confirmed the validity and reliability of knowledge sharing and organizational sustainability at first and second orders in the hotel industry in non-Western context.

6.
Front Immunol ; 14: 1148268, 2023.
Article in English | MEDLINE | ID: covidwho-2317599

ABSTRACT

Introduction: COVID-19 and autoinflammatory diseases, such as Adult-onset Still's Disease (AOSD), are characterized by hyperinflammation, in which it is observed massive production and uncontrolled secretion of pro-inflammatory cytokines. The specialized pro-resolving lipid mediators (SPMs) family is one the most important processes counteracting hyperinflammation inducing tissue repair and homeostasis restoration. Among SPMs, Protectin D1 (PD1) is able to exert antiviral features, at least in animal models. The aim of this study was to compare the transcriptome of peripheral blood mononuclear cells (PBMCs) from patients with AOSD and COVID-19 and to evaluate the role of PD1 on those diseases, especially in modulating macrophages polarization. Methods: This study enrolled patients with AOSD, COVID-19, and healthy donors HDs, undergoing clinical assessment and blood sample collection. Next-generation deep sequencing was performed to identify differences in PBMCs transcripts profiles. Plasma levels of PD1 were assessed by commercial ELISA kits. Monocyte-derived macrophages were polarized into M1 and M2 phenotypes. We analyzed the effect of PD1 on macrophages differentiation. At 10 days, macrophages were analyzed for surface expression of subtypes markers by flow cytometry. Cytokines production was measured in supernatants by Bio-Plex Assays. Results: In the transcriptomes from AOSD patients and COVID-19 patients, genes involved in inflammation, lipid catabolism, and monocytes activation were specifically dysregulated in AOSD and COVID-19 patients when compared to HDs. Patients affected by COVID-19, hospitalized in intensive care unit (ICU), showed higher levels of PD1 when compared to not-ICU hospitalized patients and HDs (ICU COVID-19 vs not-ICU COVID-19, p= 0.02; HDs vs ICU COVID-19, p= 0.0006). PD1 levels were increased in AOSD patients with SS ≥1 compared to patients with SS=0 (p=0.028) and HDs (p=0.048). In vitro treatment with PD1 of monocytes-derived macrophages from AOSD and COVID-19 patients induced a significant increase of M2 polarization vs control (p<0.05). Furthermore, a significant release of IL-10 and MIP-1ß from M2 macrophages was observed when compared to controls (p<0.05). Discussion: PD1 is able to induce pro-resolutory programs in both AOSD and COVID-19 increasing M2 polarization and inducing their activity. In particular, PD1-treated M2 macrophages from AOSD and COVID-19 patients increased the production of IL-10 and enhanced homeostatic restoration through MIP-1ß production.


Subject(s)
COVID-19 , Still's Disease, Adult-Onset , Humans , Transcriptome , Interleukin-10/metabolism , Leukocytes, Mononuclear/metabolism , Chemokine CCL4/metabolism , COVID-19/metabolism , Cytokines/metabolism , Docosahexaenoic Acids/metabolism , Macrophages , Cell Differentiation/genetics
7.
Infektsiya I Immunitet ; 12(5):827-836, 2022.
Article in English | Web of Science | ID: covidwho-2309353

ABSTRACT

The international biomedical community has been currently facing a need to find a simple and most accessible type of analysis that helps to diagnose tuberculosis ( TB) with the maximum reliability even before the onset of clinical manifestations. Tuberculosis results in more deaths than any other pathogen, second only to pneumonia caused by the SARS-CoV-2 virus, but the majority of infected people remain asymptomatic. In addition, it is important to develop methods to distinguish various forms of tuberculosis infection course at early stages and to reliably stratify patients into appropriate groups (persons with a rapidly progressing infection, chronic course, latent infection carriers). Immunometabolism investigates a relationship between bioenergetic pathways and specific functions of immune cells that has recently become increasingly important in scientific research. The host anti-mycobacteria immune response in tuberculosis is regu lated by a number of metabolic networks that can interact both cooperatively and antagonistically, influencing an outcome of the disease. The balance between inflammatory and immune reactions limits the spread of mycobacteria in vivo and protects from developing tuberculosis. Cytokines are essential for host defense, but if uncontrolled, some mediators may contribute to developing disease and pathology. Differences in plasma levels of metabolites between individuals with advanced infection, LTBI and healthy individuals can be detected long before the onset of the major related clinical signs. Changes in amino acid and cortisol level may be detected as early as 12 months before the onset of the disease and become more prominent at verifying clinical diagnosis. Assessing serum level of certain amino acids and their ratios may be used as additional diagnostic markers of active pulmonary TB. Metabolites, including serum fatty acids, amino acids and lipids may contribute to detecting active TB. Metabolic profiles indicate about increased indolamine 2.3-dioxygenase 1 (IDO1) activity, decreased phospholipase activity, increased adenosine metabolite level, and fibrous lesions in active vs. latent infection. TB treatment can be adjusted based on individual patient metabolism and biomarker profiles. Thus, exploring immunometabolism in tuberculosis is necessary for development of new therapeutic strategies.

8.
Russian Journal of Infection and Immunity ; 12(5):827-836, 2022.
Article in Russian | EMBASE | ID: covidwho-2267037

ABSTRACT

The international biomedical community has been currently facing a need to find a simple and most accessible type of analysis that helps to diagnose tuberculosis (TB) with the maximum reliability even before the onset of clinical manifestations. Tuberculosis results in more deaths than any other pathogen, second only to pneumonia caused by the SARS-CoV-2 virus, but the majority of infected people remain asymptomatic. In addition, it is important to develop methods to distinguish various forms of tuberculosis infection course at early stages and to reliably stratify patients into appropriate groups (persons with a rapidly progressing infection, chronic course, latent infection carriers). Immunometabolism investigates a relationship between bioenergetic pathways and specific functions of immune cells that has recently become increasingly important in scientific research. The host anti-mycobacteria immune response in tuberculosis is regulated by a number of metabolic networks that can interact both cooperatively and antagonistically, influencing an outcome of the disease. The balance between inflammatory and immune reactions limits the spread of mycobacteria in vivo and protects from developing tuberculosis. Cytokines are essential for host defense, but if uncontrolled, some mediators may contribute to developing disease and pathology. Differences in plasma levels of metabolites between individuals with advanced infection, LTBI and healthy individuals can be detected long before the onset of the major related clinical signs. Changes in amino acid and cortisol level may be detected as early as 12 months before the onset of the disease and become more prominent at verifying clinical diagnosis. Assessing serum level of certain amino acids and their ratios may be used as additional diagnostic markers of active pulmonary TB. Metabolites, including serum fatty acids, amino acids and lipids may contribute to detecting active TB. Metabolic profiles indicate about increased indolamine 2.3-di-oxygenase 1 (IDO1) activity, decreased phospholipase activity, increased adenosine metabolite level, and fibrous lesions in active vs. latent infection. TB treatment can be adjusted based on individual patient metabolism and biomarker profiles. Thus, exploring immunometabolism in tuberculosis is necessary for development of new therapeutic strategies.Copyright © 2022 Saint Petersburg Pasteur Institute. All rights reserved.

9.
The Journal for Transdisciplinary Research in Southern Africa ; 19(1), 2023.
Article in English | ProQuest Central | ID: covidwho-2287375

ABSTRACT

Globally, there has been increasing interest in the study of caregiving. Female caregiver predictors or mediators and a multidimensional female caregiver burden (FCG burden) model that incorporates environmental hygiene factors such as toilet hygiene and kitchen are lacking, particularly in low- and middle-income countries. This study evaluates caregiver burden predictors and provides a multidimensional model of unremunerated care burden for family practice and policy in two different population group communities in Cape Town, South Africa. A systematic random sampling (SRS) procedure was employed, and 100 black or African and 100 mixed race female caregivers in two different cultural communities were selected for a reliable cross-section. A questionnaire was used to solicit caregiver burden information. The average age of the female caregivers was 47.9 years (standard deviation [SD] = 11.7 years). About 49.0% of the selected participants were older than 50 years. There was a significant relationship between environmental health (kitchen hygiene and toilet hygiene). Social grant receipt and physical health status of care recipients were predictors of caregiver burden. The overall model explained the largest variation (43.4%) in caregiver burden. This study recommends an increase in the social grants given to caregivers. National health policies should reflect female caregivers' circumstances. Transdisciplinarity Contribution: This article contributes to the improvement in community health.

10.
Neumologia y Cirugia de Torax(Mexico) ; 81(1):41-51, 2022.
Article in Spanish | EMBASE | ID: covidwho-2278995

ABSTRACT

The regulation of inflammation is a complex pathophysiological process that depends on the production of oxygenated lipid derivatives essential polyunsaturated fatty acids, like omega-3 and omega-6, among which are the lipoxins resolvins and protectins, called specialized pro-resolving lipid mediators (SPM). Their activity is associated with the control of respiratory infection processes to modulate the production of proinflammatory cytokines, avoiding damage due to inflammation-associated necrosis, reducing microbial loads, and promoting tissue remodeling. Therefore, we review some of the biochemical, physiological and immunological aspects of SPM in the regulation of inflammation in respiratory infections.Copyright © 2022, Instituto Nacional de Enfermedades Respiratorias. All rights reserved.

11.
12.
Front Mol Biosci ; 10: 1104577, 2023.
Article in English | MEDLINE | ID: covidwho-2267519

ABSTRACT

The most severe clinical manifestations of the horrifying COVID-19 disease, that claimed millions of lives during the pandemic time, were Acute respiratory distress syndrome (ARDS), Coagulopathies, septic shock leading eventually to death. ARDS was a consequence of Cytokine storm. The viral SARS-COV2infection lead to avalanche of cytokines and eicosanoids causing "cytokine storm" and "eicosanoid storm." Cytokine storm is one of the macrophage-derived inflammatory responses triggered by binding of virus particles to ACE2 receptors of alveolar macrophages, arise mainly due to over production of various pro-inflammatory mediators like cytokines, e.g., interleukin (IL)-1, IL-2, and tumor necrosis factor (TNF)- α, causing pulmonary edema, acute respiratory distress, and multi-organ failure. Cytokine storm was regarded as the predictor of severity of the disease and was deemed one of the causes of the high mortality rates due to the COVID-19. The basis of cytokine storm is imbalanced switching between an inflammation increasing - pro-inflammatory (M1) and an inflammation regulating-anti-inflammatory (M2) forms of alveolar macrophages which further deteriorates if opportunistic secondary bacterial infections prevail in the lungs. Lack of sufficient knowledge regarding the virus and its influence on co-morbidities, clinical treatment of the diseases included exorbitant use of antibiotics to mitigate secondary bacterial infections, which led to the unwarranted development of multidrug resistance (MDR) among the population across the globe. Antimicrobial resistance (AMR) needs to be addressed from various perspectives as it may deprive future generations of the basic health immunity. Specialized pro-resolving mediators (SPMs) are generated from the stereoselective enzymatic conversions of essential fatty acids that serve as immune resolvents in controlling acute inflammatory responses. SPMs facilitate the clearance of injured tissue and cell debris, the removal of pathogens, and augment the concentration of anti-inflammatory lipid mediators. The SPMs, e.g., lipoxins, protectins, and resolvins have been implicated in exerting inhibitory influence on with cytokine storm. Experimental evidence suggests that SPMS lower antibiotic requirement. Therefore, in this review potential roles of SPMs in enhancing macrophage polarization, triggering immunological functions, hastening inflammation resolution, subsiding cytokine storm and decreasing antibiotic requirement that can reduce AMR load are discussed.

13.
Eur Neurol ; 86(3): 209-216, 2023.
Article in English | MEDLINE | ID: covidwho-2258789

ABSTRACT

BACKGROUND: Acute transverse myelitis (ATM) is a rare neurological disorder in adults characterized by localized inflammation of gray and white matter in one or more contiguous spinal cord segments in the absence of a compressive injury. Several reports have connected the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to the pathophysiology of ATM. SUMMARY: Direct invasion of the spinal cord, cytokine storm, or an autoimmune response are the possible pathways by which the SARS-CoV-2 virus can affect the spinal cord and lead to ATM. Direct invasion is facilitated by the presence of angiotensin-converting enzyme 2 (ACE2) receptors on the membranes of the spinal cord neurons. Cytokine storm syndrome could be derived from elevated levels of several immunological factors following severe involvement with coronavirus disease 2019 (COVID-19). Finally, autoimmune responses can cause post-infectious ATM through several hypothesized processes, including molecular mimicry, epitope spreading, bystander activation, and polyclonal B-cell activation. KEY MESSAGES: COVID-19-induced ATM is mostly a longitudinally-extensive ATM (LEATM), in which more spinal cord segments are damaged, which results in a worse sequel compared to short-segment ATM. Therefore, it is suggested that COVID-19 patients, particularly severe cases, be followed up for a probable incidence of ATM, even long after recovery from the disease and elimination of the virus from the host, because an early diagnosis and effective therapy may stop the spread of inflammation to adjacent segments.


Subject(s)
COVID-19 , Myelitis, Transverse , Adult , Humans , COVID-19/complications , Myelitis, Transverse/etiology , SARS-CoV-2 , Inflammation
14.
Front Immunol ; 14: 1074465, 2023.
Article in English | MEDLINE | ID: covidwho-2254309

ABSTRACT

COVID-19 has been affecting the world unprecedentedly and will remain widely prevalent due to its elusive pathophysiological mechanism and the continuous emergence of new variants. Critically ill patients with COVID-19 are commonly associated with cytokine storm, multiple organ dysfunction, and high mortality. To date, growing evidence has shown that extracorporeal hemoadsorption can exert its adjuvant effect to standard of care by regulating immune homeostasis, reducing viremia, and decreasing endotoxin activity in critically ill COVID-19 cases. However, the selection of various hemofilters, timing of initiation and termination of hemoadsorption therapy, anticoagulation management of extracorporeal circuits, identification of target subgroups, and ultimate survival benefit remain controversial. The purpose of this narrative review is to comprehensively summarize the rationale for the use of hemoadsorption in critically ill patients with COVID-19 and to gather the latest clinical evidence in this field.


Subject(s)
COVID-19 , Hemofiltration , Humans , Critical Illness , Cytokines , Blood Coagulation
15.
J Intensive Med ; 1(1): 14-25, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-2249688

ABSTRACT

Coronavirus disease 19 (COVID-19) is placing a major burden on healthcare, economy and social systems worldwide owing to its fast spread and unacceptably high death toll. The unprecedented research effort has established the role of a deregulated immune response to the severe acute respiratory syndrome coronavirus 2, resulting in systemic inflammation. After that, the immunomodulatory approach has been placed in the top list of the research agenda for COVID-19. Corticosteroids have been used for more than 70 years to modulate the immune response in a broad variety of diseases. These drugs have been shown to prevent and attenuate inflammation both in tissues and in circulation via non-genomic and genomic effects. At the bedside, numerous observational cohorts have been published in the past months and have been inconclusive. Randomized controlled trials with subsequent high quality meta-analyses have provided moderate to strong certainty for an increased chance of survival and relief from life supportive therapy with corticosteroids given at a dose of 6 mg per day dexamethasone or equivalent doses of hydrocortisone or methylprednisolone. The corticotherapy was not associated with an increased risk of bacterial infection or of delayed viral clearance. In daily practice, physicians may be encouraged to use corticosteroids when managing patients with COVID-19 requiring oxygen supplementation.

16.
Southern Journal of Business and Ethics ; 14:34-55, 2022.
Article in English | ProQuest Central | ID: covidwho-2228428

ABSTRACT

This is the second in a series that examines emerging issues and opportunities in mediation. The need for social distancing over the past two years spawned a meteoric rise in virtual mediation to the extent that it is now the dominant form of alternative dispute resolution. Despite its efficiency and necessity at times, virtual mediation, now synonymous with Zoom mediation, presents new challenges for mediators. In particular, mediators have lost some control over social dynamics (Zoom dynamics). This paper examines a host of errant Zoom styles among participants that may plague the virtual mediation process. It offers a Personality-Based Model of Errant Zoom Styles as well as coping strategies for dealing with them. The extent to which mediators recognize and respond to these errant Zoom styles impacts the effectiveness of virtual Mediation. Recommendations and an update on mediation settlement rates are also provided.

17.
Russian Journal of Infection and Immunity ; 12(5):827-836, 2022.
Article in Russian | EMBASE | ID: covidwho-2232059

ABSTRACT

The international biomedical community has been currently facing a need to find a simple and most accessible type of analysis that helps to diagnose tuberculosis (TB) with the maximum reliability even before the onset of clinical manifestations. Tuberculosis results in more deaths than any other pathogen, second only to pneumonia caused by the SARS-CoV-2 virus, but the majority of infected people remain asymptomatic. In addition, it is important to develop methods to distinguish various forms of tuberculosis infection course at early stages and to reliably stratify patients into appropriate groups (persons with a rapidly progressing infection, chronic course, latent infection carriers). Immunometabolism investigates a relationship between bioenergetic pathways and specific functions of immune cells that has recently become increasingly important in scientific research. The host anti-mycobacteria immune response in tuberculosis is regulated by a number of metabolic networks that can interact both cooperatively and antagonistically, influencing an outcome of the disease. The balance between inflammatory and immune reactions limits the spread of mycobacteria in vivo and protects from developing tuberculosis. Cytokines are essential for host defense, but if uncontrolled, some mediators may contribute to developing disease and pathology. Differences in plasma levels of metabolites between individuals with advanced infection, LTBI and healthy individuals can be detected long before the onset of the major related clinical signs. Changes in amino acid and cortisol level may be detected as early as 12 months before the onset of the disease and become more prominent at verifying clinical diagnosis. Assessing serum level of certain amino acids and their ratios may be used as additional diagnostic markers of active pulmonary TB. Metabolites, including serum fatty acids, amino acids and lipids may contribute to detecting active TB. Metabolic profiles indicate about increased indolamine 2.3-di-oxygenase 1 (IDO1) activity, decreased phospholipase activity, increased adenosine metabolite level, and fibrous lesions in active vs. latent infection. TB treatment can be adjusted based on individual patient metabolism and biomarker profiles. Thus, exploring immunometabolism in tuberculosis is necessary for development of new therapeutic strategies. Copyright © 2022 Saint Petersburg Pasteur Institute. All rights reserved.

18.
Russian Journal of Infection and Immunity ; 12(5):827-836, 2022.
Article in Russian | EMBASE | ID: covidwho-2226334

ABSTRACT

The international biomedical community has been currently facing a need to find a simple and most accessible type of analysis that helps to diagnose tuberculosis (TB) with the maximum reliability even before the onset of clinical manifestations. Tuberculosis results in more deaths than any other pathogen, second only to pneumonia caused by the SARS-CoV-2 virus, but the majority of infected people remain asymptomatic. In addition, it is important to develop methods to distinguish various forms of tuberculosis infection course at early stages and to reliably stratify patients into appropriate groups (persons with a rapidly progressing infection, chronic course, latent infection carriers). Immunometabolism investigates a relationship between bioenergetic pathways and specific functions of immune cells that has recently become increasingly important in scientific research. The host anti-mycobacteria immune response in tuberculosis is regulated by a number of metabolic networks that can interact both cooperatively and antagonistically, influencing an outcome of the disease. The balance between inflammatory and immune reactions limits the spread of mycobacteria in vivo and protects from developing tuberculosis. Cytokines are essential for host defense, but if uncontrolled, some mediators may contribute to developing disease and pathology. Differences in plasma levels of metabolites between individuals with advanced infection, LTBI and healthy individuals can be detected long before the onset of the major related clinical signs. Changes in amino acid and cortisol level may be detected as early as 12 months before the onset of the disease and become more prominent at verifying clinical diagnosis. Assessing serum level of certain amino acids and their ratios may be used as additional diagnostic markers of active pulmonary TB. Metabolites, including serum fatty acids, amino acids and lipids may contribute to detecting active TB. Metabolic profiles indicate about increased indolamine 2.3-di-oxygenase 1 (IDO1) activity, decreased phospholipase activity, increased adenosine metabolite level, and fibrous lesions in active vs. latent infection. TB treatment can be adjusted based on individual patient metabolism and biomarker profiles. Thus, exploring immunometabolism in tuberculosis is necessary for development of new therapeutic strategies. Copyright © 2022 Saint Petersburg Pasteur Institute. All rights reserved.

19.
Cureus ; 15(1): e34307, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2226185

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been associated with multiple inflammatory symptoms involving several organ systems, including hematologic manifestations. Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening syndrome caused by excessive inflammation in the absence of immune regulation. We present the case of a patient with HLH secondary to dysregulated inflammatory response following COVID-19; we also describe the diagnostic and management challenges associated with the condition.

20.
Biochem Pharmacol ; 209: 115437, 2023 03.
Article in English | MEDLINE | ID: covidwho-2209860

ABSTRACT

Fatal "cytokine storms (CS)" observed in critically ill COVID-19 patients are consequences of dysregulated host immune system and over-exuberant inflammatory response. Acute respiratory distress syndrome (ARDS), multi-system organ failure, and eventual death are distinctive symptoms, attributed to higher morbidity and mortality rates among these patients. Consequent efforts to save critical COVID-19 patients via the usage of several novel therapeutic options are put in force. Strategically, drugs being used in such patients are dexamethasone, remdesivir, hydroxychloroquine, etc. along with the approved vaccines. Moreover, it is certain that activation of the resolution process is important for the prevention of chronic diseases. Until recently Inflammation resolution was considered a passive process, rather it's an active biochemical process that can be achieved by the use of specialized pro-resolving mediators (SPMs). These endogenous mediators are an array of atypical lipid metabolites that include Resolvins, lipoxins, maresins, protectins, considered as immunoresolvents, but their role in COVID-19 is ambiguous. Recent evidence from studies such as the randomized clinical trial, in which omega 3 fatty acid was used as supplement to resolve inflammation in COVID-19, suggests that direct supplementation of SPMs or the use of synthetic SPM mimetics (which are still being explored) could enhance the process of resolution by regulating the aberrant inflammatory process and can be useful in pain relief and tissue remodeling. Here we discussed the biosynthesis of SPMs, & their mechanistic pathways contributing to inflammation resolution along with sequence of events leading to CS in COVID-19, with a focus on therapeutic potential of SPMs.


Subject(s)
COVID-19 , Fatty Acids, Omega-3 , Humans , SARS-CoV-2/metabolism , Cytokine Release Syndrome/drug therapy , Inflammation/metabolism , Fatty Acids, Omega-3/metabolism , Eicosanoids , Inflammation Mediators/metabolism , Docosahexaenoic Acids/therapeutic use , Randomized Controlled Trials as Topic
SELECTION OF CITATIONS
SEARCH DETAIL